GE-2: Linear Algebra (Semester II) Vector Spaces

Note: Students are required to submit the hard copy of the solved assignment later on.

- Q1. Mark each of the following statements TRUE or FALSE.
 - a) The set {0} is a subspace of V for any vector space V.
 - b) V is a subspace of itself for any vector space V.
 - c) \mathbb{R}^3 is a subspace of \mathbb{R}^4 .
 - d) Let *W* is a subspace of *V*. If $u \in V$ and $\alpha . u \in W$ for all $\alpha \in \mathbb{R}$, then $u \in W$.
 - e) The set $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$ of all integers is a vector space over \mathbb{R} with usual addition and multiplication in \mathbb{R} .
 - f) The set \mathbb{Q} of all rational numbers is a vector subspace of \mathbb{R} .
 - g) Every nonzero vector space V contains a nonzero proper subspace.
- Q2. Let V be a vector space with dimension 12. Let S be a subset of V which is linearly independent and has 11 vectors. State which of the following statements is TRUE or FALSE.
 - a) Every nonempty subset S1 of S is linearly independent.
 - b) S is a basis for V.
 - c) There must exist a linearly dependent subset S1 of V such that $S \subset S1$.
 - d) There must exist a linearly independent subset S1 of V such that S⊂ S1 and S1 is a basis for V.
 - e) Dimension of span(S) < dimension of V.
- Q3. Find an example of a subset of the vector space \mathbb{R} that is closed under addition and contains the zero vector (which in this case is the number 0) but is not closed under scalar multiplication.
- Q4. Show that the set $V = \{(x,y,z) \mid x,y,z \text{ in } \mathbb{R} \text{ and } x.x = z.z \}$ is not a subspace of \mathbb{R}^3 .
- Q5. Examine whether or not M = {(r,r+2,0) | r in \mathbb{R} } is a subspace of \mathbb{R}^3
- Q6. Let V be the vector space given by V= F(ℝ, ℝ) = Set of all real valued functions from ℝ to ℝ
 Then show that the set W,
 W= F_€(ℝ, ℝ) = Set of all even real valued functions from ℝ to ℝ, is a subspace of V.
- Q7. Let W_1 and W_2 be the subsets of $M_{2x2}(\mathbb{R})$ given by $W_1 = \{A \in M_{2x2}(\mathbb{R}) \mid AX=0, X=\begin{bmatrix}1\\1\end{bmatrix}\}$ & $W_2 = \{A \in M_{2x2}(\mathbb{R}) \mid A^2=A\}$ Then check whether W_1 and W_2 are subspaces of $M_{2x2}(\mathbb{R})$.
- Q8. Let $P_k(x) = x^k + x^{k+1} + ... + x^n$, k=0,1,2,...,n. Then show that the set $\{P_0(x), P_1(x),..., P_n(x)\}$ is linearly independent in $P_n(\mathbb{R})$.
- Q9. Find a basis and dimension for the subspace W of \mathbb{R}^4 spanned by the set W = { [x, y, z, t] | x= y+z, z= y+t}
- Q10. Find a basis for \mathbb{R}^4 that contains the vectors $v_1 = [1, 0, 1, 0]$ and $v_2 = [-1, 1, -1, 0]$.
- Q11. Show that the set B B={ $x^3+2x^2-4x+18$, $3x^2+4x-4$, x^3+5x^2-3 , x+2} is a basis for the vector space P₃.