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Simplex Method 
 
 
 
After reading this chapter, you should be able to: 
 

1. Formulate constrained optimization problems as a linear program 
2. Solve linear programs with graphical solution approaches 
3. Solve constrained optimization problems using simplex method 

 
What is linear programming? 
Linear programming is an optimization approach that deals with problems that have specific 
constraints. The one-dimensional and multi-dimensional optimization problems previously 
discussed did not consider any constraints on the values of the independent variables. In 
linear programming, the independent variables which are frequently used to model concepts 
such as availability of resources or required ratio of resources are constrained to be more 
than, less than or equal to a specific value. 
The simplest linear program requires an objective function and a set of constraints. The 
objective function is either a maximization or a minimization of a linear combination of the 
independent variables of the problem and is expressed as (for a maximization problem) 

nn xcxcxcz +++= ...max 2211  
where ic  expresses the contribution (e.g. cost, profit etc) of each unit of ix  to the objective of 
the problem, and ix  are the independent or more commonly referred to as the decision 
variables whose values are determined by the solution of the problem. 
 
The constraints are also a linear combination of the decision variables commonly expressed 
as an inequality of the form  

ininii bxaxaxa ≤+++ ...2211  
where ija  and ib are constant coefficients determined from the problem description as they 
relate to the constraints on the availability, interaction, and use of the resources.  
 
Example 1 
A woodworker builds and sells band-saw boxes. He manufactures two types of boxes using a 
combination of three types of wood, maple, walnut and cherry. To construct the Type I box, 
the carpenter requires 2 board foot (bf) (The board foot is a specialized unit of measure for 
the volume of lumber. It is the volume of a one-foot length of a board one foot wide and one 
inch thick) maple and 1 bf walnut. To construct the Type II box, he requires 3 bf of cherry 
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and 1 bf of walnut.  Given that he has 10 bf of maple, 5 bf of walnut and 11 bf of cherry and 
he can sell Type I of box for $120 and Type II box for $160, how many of each box type 
should he make to maximize his revenue? Assume that the woodworker can build the boxes 
in any size, therefore fractional solutions are acceptable. 
Solution 
The decision variables in this problem are the number of Type I and II boxes to be built. 
They are denoted by 1x  and 2x  respectively. Since the goal is to maximize revenues and the 
revenues are a function of the number of boxes of each type sold, we can represent the 
objective function as 

21 160120max xxz +=  
One of the constraints in this problem is availability of different types of wood. Therefore, 
based on the number of boxes produced, the sum of the total wood requirement must be less 
than or equal to the available amount of wood for each type. We can represent this type of 
constraint with three inequalities referring to maple, cherry and walnut respectively as 
follows: 
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In addition, there are the non-negativity constraints which ensure that our solution does not 
have negative number of boxes. These constraints are shown as 

0, 21 ≥xx  
 
Graphical Solutions to Linear Programs 
Linear programs of two or three dimensions can be solved using graphical solutions. While 
graphical solutions are not useful in addressing realistic size problems, they are particularly 
helpful in providing an intuitive explanation to the algebraic methodologies used to solve 
larger linear programs using computer algorithms. The graphical solution to linear programs 
is best explained by using an example. 
 
Example 2 
Provide a graphical solution to the linear program in Example 1. 
Solution 

For a linear inequality of the form bxxf ≤),( 21  or bxxf ≥),( 21 , the points that satisfy the 
inequality includes the points on the line and the points on one side of the line. For example 
for the inequality 102 1 ≤x , the shaded region in Figure 1 shows the points that satisfy this 
inequality. To determine which side of the line satisfies the inequality, simply test a single 
point in each region, such as the origin (0, 0) which satisfies the constraint and lies on the 
right side of the line in the shaded region. 
 



 
 

                                         
                           Figure 1. Graphical representation of the points satisfying 102 1 ≤x . 
 
The set of points that satisfy all the constraints, including non-negativity constraints, from 
Example 1 are shown in Figure 2. The region which contains the points that satisfies all the 
constraint in a linear program is referred to as the feasible region.  
 
                                         

                                            
                                  Figure 2. Graphical representation of the feasible region. 
 
The objective function can also be represented by a line referred to as the isoprofit line  
(isocost line for minimization problems).  To determine this line, simply assume a value for 
z such as 0=z . Then the objective function can be written as  

21 1601200 xx +=  
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3

160
120 xxx −=−=  

where the isoprofit line has a slope of 4
3− . The isoprofit line is shown as a dashed line 

through the origin in Figure 3. To determine the optimal solution, the isoprofit line is moved 
parallel to the original line drawn with slope 4

3−  in the direction that increases z until the 
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last point intersecting the feasible region is obtained. Such a point is reached at a single point 
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 as shown in Figure 3. 

                                           
                             Figure 3. Graphical representation of the optimal solution. 
 
At the optimal solution, the value of the objective function is calculated as  
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The optimal solution when substituted back into the inequalities representing the structure of 
the problem reveals some additional important information about the problem. Below is the 
original set of constraints where the optimal solution to the problem is substituted in place of 
the decision variables. Note that the last two equations are now equalities indicating that the 
availability of the resources associated with these constraints (cherry and walnut) are 
preventing us from improving the value of the objective function. Such constraints are 
referred to as binding constraints. Note also that in the graphical solution, the optimal 
solution lies at the intersection of the binding constraints. On the other hand, the first 
inequality is a nonbinding constraint in the sense that the left-hand and the right-hand side of 
the constraint are unequal and this constraint does not pose a limitation to the optimal 
solution. In other words, if want to increase our revenues, we need to look into increasing the 
availability of cherry and walnut and not maple. 
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Solutions to Linear Programs 
Solutions to linear programs can be one of two types as follows: 

Optimal Solution 
 

 



 
 
1. Unique solution:  
As seen in the solution to Example 2, there is a single point in the feasible region for which 
the maximum (or minimum in a minimization problem) value of the objective function is 
attainable. In graphical solutions, these points lie at the intersection of two or more lines 
which represent the constraints. 
2. Alternate Solutions: 
 If the isoprofit (isocost) line is parallel to one of the lines representing the constraints, then 
the intersection would be an infinite number of points. In this case, any of such points would 
produce the maximum (minimum) value of the objective function. 

A set of points S  is said to be a convex set if the line segment joining any pair of 
points in S is also completely contained in S . For example, the feasible region shown in 
Figure 2 is a convex set. This is no coincidence. It can be shown that the feasible region of 
any linear program is a convex set.  

Figure 4 shows the feasible region of Example 2 and highlights the corner points (also 
known as extreme points) of the convex set which occur where two or more constraints 
intersect within the feasible region. These extreme points are of special importance. Any 
linear program that has an optimal solution has an extreme point that is optimal. This is a 
very important result because it greatly reduces the number of points which may be optimal 
solutions to the linear program. For example, the entire feasible region shown in Figure 2 
contains an infinite number of points, however the feasible region contains only four extreme 
points which may be the optimal solution to the linear program.  
 
 

                                       
                   Figure 4. Graphical representation of the feasible region and its extreme points. 
 
Once all the extreme points are determined, finding the optimal solution is trivial in the sense 
that the value of the objective function at each of these points can be calculated and, 
depending on the goal of the objective function, the extreme point resulting in the minimum 
or the maximum value is selected as the optimal solution. The simplex method which is the 
topic of next section is a much more efficient way of evaluating the extreme points in a 
convex set to determine the optimal solution.  
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The Simplex Method 

Converting a linear program to Standard Form 
Before the simplex algorithm can be applied, the linear program must be converted into 
standard form where all the constraints are written as equations (no inequalities) and all 
variables are nonnegative (no unrestricted variables). This process of converting a linear 
program to its standard form requires the addition of slack variable is  which represents the 
amount of the resource not used in the ith  ≤ constraint. Similarly, ≥ constraints can be 
converted into standard form by subtracting excess variable ie . 
The standard form of any linear program can then be represented by the following linear 
system with n  variables (including decision, slack and excess variables) and m  constraints. 
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Example 3 
Convert the linear program in Example 1 to its standard form.  
Solution 
For convenience, the linear program is reproduced below.   

21 160120  xxZMax +=  
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To convert the first constraint form an inequality to equality, we introduce the first slack 
variable 1s where 

11 210 xs −=  or 102 11 =+ sx . 
Similarly after introducing 2s and 3s , we can convert the linear program into standard form 
as follows: 
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Basic and Nonbasic Variables, and Basic Feasible Solutions 
If we define 
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the constraints of the standard form of a linear program can be simply represented by a 
system of simultaneous equations bx =A . 

A basic solution to system of m  linear equations with n unknowns is found by setting 
mn − variables to zero and solving the m  equations for the remaining m  variables. The 

variables with zero values are referred to as the nonbasic variables and the remaining m 
variables are called the basic variables. Note that the choice of different nonbasic variables 
will lead to different solutions. If all basic variables are nonnegative, the solution is called a 
basic feasible solution. The optimum solution will be one of the basic feasible solutions. Let 
us illustrate this with an example. 
 
Example 3 
Determine a basic feasible solution for the linear program in Example 1.  
Solution 
The system of equation representing the constraints for this linear program is as follows: 
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where 5=n and 3=m . To obtain a basic feasible solution we need to set 2=−mn nonbasic 
variables to zero and solve the remaining system of 33× linear equations. Let us start with 
setting values of  21  and xx  to zero. We can easily see that the solution to the system becomes 
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In this solution, all basic variables are nonnegative; therefore the solution is a basic feasible 
solution.  



 
 
 
Relationship between extreme points of a feasible region and basic feasible solutions 
To establish the relationship between basic feasible solutions and extreme points of the 
feasible region, refer to Figure 4. The above basic feasible solution corresponds to the 
extreme point C  at the origin since in this basic feasible solution 0 and 0 21 == xx  . 
Alternatively, if we set the values of  23  and xs  to zero, we see that we obtain the basic 
feasible solution where 11  and ,5  ,5  211 === ssx which corresponds to the extreme point D  
in Figure 4. 

There is a special relationship between extreme points C  and D  arising from their 
adjacency that is relevant to the simplex method. For a linear program with m constraints, 
two basic feasible solutions are adjacent if they have 1−m  basic variables in common. In the 
basic feasible solutions corresponding to adjacent points C  and D , the 1−m  common basic 
variables are 11  and ,5  21 == ss . 
 
The Simplex Algorithm 
The simplex algorithm, instead of evaluating all basic feasible solutions (which can be 
prohibitive even for moderate-size problems), starts with a basic feasible solution and moves 
through other basic feasible solutions that successively improve the value of the objective 
function. The algorithm terminates once the optimal value is reached. Below we present a 
step-wise description of the simplex algorithm. 

1. Convert the linear program into standard form. 
2. Obtain a basic feasible solution from the standard form. 
3. Determine if the basic feasible solution is optimal. 
4. If the current basic feasible solution is not optimal, select a nonbasic variable that 

should become a basic variable and basic variable which should become a nonbasic 
variable to determine a new basic feasible solution with an improved objective 
function value. 

5. Use elementary row operations to solve for the new basic feasible solution. Return to 
Step 3 

 
Steps 1 and 2 of the algorithm have been previously discussed. Steps 3, 4 and 5 of the 
algorithm are best executed with the help of a tableau which is simply a table with a 
particular format that shows a summary of the key information regarding the linear program. 
For example the tableau shown in Table 1 below corresponds to the linear program described 
in Example 1 and the basic feasible solution in Example 3. There are several things to note 
about Table 1. 
 

1. The first row of the table (also called row 0) corresponds to the objective function 
where all the variables are on the left-hand side following the format 

2. 0160120 21 =−− xxz  
3.  The basic feasible solution corresponds to the solution in Example 3. In addition note 

that variable 0=z  is also considered as a basic variable. 



 
 

4. In this particular example, the initial tableau where the decision variables 
21  and xx are considered as nonbasic variables leads to a basic feasible solution due to 

the fact that all the right hand side variables are nonnegative. 
5. The tableau is in proper form which means the solution can be read directly by 

looking at the tableau and the RHS values. For a tableau to be in proper form it must 
meet all the following requirements: 

one basic variable per row 
the coefficient of all basic variables are +1 and the coefficients above and below the basic 
variables are zero 
z  is the basic variable for row 0 
 
         Table 1.The initial tableau for example on in proper form 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 -160 0 0 0 0  

1s  0 2 0 1 0 0 10 None 

2s  0 0 3 0 1 0 11 
3

11  

3s  0 1 1 0 0 1 5 5 
 
In step 3, to determine if a basic feasible solution is optimal, we need to determine if any of 
the nonbasic variables (who has value zero) can be increased to improve the value of the 
objective function. For example, in Table 1, since 21 160120 xxz += , increasing either one of 
the nonbasic variables 21  and xx would increase the value of the objective function value. In 
the tableau, this equates to looking for negative coefficients in row 0 due to the format the 
objective function is written. The basic feasible solution shown in Table 1 is therefore not 
optimal since the coefficients of 21  and xx are less than zero. 

To improve the solution, we can increase the value of either 21 or  xx . We choose to 
increase 2 x  since the value of the objective function increases at a higher rate (160 vs. 120 
per unit of increase). The nonbasic variable with the most negative coefficient (in a 
maximization problem) in row 0, in this case 2 x , is called the entering variable and is always 
selected as the nonbasic variable that becomes a basic variable. 

The basic variable that is replaced by the entering variable, also called the leaving 
variable, is determined by looking at the values in the “Ratio” column in the tableau. The 
values in this column are simply the ratio of the RHS values divided by the coefficient of the 
entering variable in that row. The leaving variable is selected to be the basic variable in the 
row with the smallest ratio. This is the highest value that the entering variable can have and 
still result in a basic feasible solution. For the tableau shown in Table 1, the leaving variable 
is 2s in row 3. 

Once the entering and leaving variables are determined, we use elementary row 
operations (add link?) (EROs) to make the entering variable a basic variable in the row of the 
leaving variable by making its coefficient 1 in that row and 0 in all other rows. For example, 
for Table 1 where the entering and leaving variables are  22  and sx  respectively, after the 



 
 
 
EROs, the tableau is shown in Table 2.  The tableau shows a new basic feasible solution 
(note that all RHS are nonnegative) where 
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This basic feasible solution corresponds to the adjacent extreme point A in Figure 4 with 
coordinates 3

11 and 0 21 == xx  and objective function value 3
1760  . 

 
Table 2.The tableau for the basic feasible solution corresponding to extreme point A in 
proper form. 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 0 0 

3
160

 
0 

3
1760   

1s  0 2 0 1 0 0 10 5  
2x  0 0 1 0 

3
1  0 

3
11  None 

3s  0 1 0 0 
3

1−  1 
3

4  3
4  

 
After a new basic feasible solution is obtained, the algorithm returns to Step 3 to check if the 
new basic feasible solution is optimal. This cycle continues until the objective function value 
cannot be increased by increasing the value of any of the nonbasic variables. In other words, 
in a maximization problem, this is the same as having no negative valued coefficients in row 
0.  
A note about minimization problems: 
 It is important to note that the optimality condition of no negative valued coefficients in row 
0 is only applicable in maximization problems. In a minimization problem, the optimality 
condition exists when none of the coefficients in row 0 are positive.  Furthermore, in 
minimization problems, the entering variable is chosen to be the nonbasic variable with the 
highest positive coefficient in row 0.  
Let us illustrate the simplex algorithm by solving the problem presented in Example 1.  
 
Example 4 
Solve the linear program in Example 1using the simplex algorithm.  
Solution 

Step 1: 
Convert the linear program into standard form. 
The linear program in standard form is 
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Step 2:  
Obtain a basic feasible solution from the standard form. 
Previously we have shown that the solution where 0 and 0 21 == xx is a basic feasible 
solution so we will start the algorithm here. 
Step 3:  
Determine if the basic feasible solution is optimal.  
At this step we create the tableau for this basic feasible solution which was initially shown in 
Table 1. For convenience the table is reproduced as Table 3.  
 
Table 3.The initial tableau in proper form 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 -160 0 0 0 0  

1s  0 2 0 1 0 0 10 None 

2s  0 0 3 0 1 0 11 
3

11  

3s  0 1 1 0 0 1 5 5 
 
Step 4: 
 If the current basic feasible solution is not optimal, select a nonbasic variable that should 
become a basic variable and basic variable which should become a nonbasic variable to 
determine a new basic feasible solution with an improved objective function value. 
The current solution is not optimal. There are negative coefficients in row 0.  Since 2x  has 
the most negative coefficient in row 0 and 2s  has the lowest ratio, the entering and the 
leaving variables are 22  and sx , respectively. 
Step 5:  
Use elementary row operations to solve for the new basic feasible solution. Return to Step 3 
The new basic feasible solution is shown in Table 4, which is the same as Table 2.  

 
Table 4.The tableau for the new basic feasible solution in the first iteration 

Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 0 0 

3
160  0 

3
1760   

1s  0 2 0 1 0 0 10 5  
2x  0 0 1 0 

3
1  0 

3
11  None 

3s  0 1 0 0 
3

1−  1 
3

4  3
4  

 



 
 
 
Step 3:   
Determine if the basic feasible solution is optimal.  
The basic solution in Table 4 is still not optimal as the objective function value can be 
increased by increasing the value of 1x .  
Step 4:  
If the current basic feasible solution is not optimal, select a nonbasic variable that should 
become a basic variable and basic variable which should become a nonbasic variable to 
determine a new basic feasible solution with an improved objective function value. 
In the second iteration, since 1x  has the most (and only) negative coefficient in row 0 and 3s  
has the lowest ratio, the entering and leaving variables are 31  and sx , respectively. 
Step 5:  
Use elementary row operations to solve for the new basic feasible solution. Return to Step 3 
The new basic feasible solution is shown in Table 5.  
 
Table 5.The tableau for the basic feasible solution in the second iteration . 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 0 0 0 

3
40  120 

3
2240   

1s  0 0 0 1 
3

2  -2 
3

22   

2x  0 0 1 0 
3

1  0 
3

11   

1x  0 1 0 0 
3

1−  1 
3

4   

 
Step 3: 
Determine if the basic feasible solution is optimal.  
Since there are no negative coefficients in row 0, we have reached the optimal solution where 
the objective function value is 3

2240  and  
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Note that all these values can be read from the tableau shown in Table 5. This solution also 
corresponds to the extreme point B in Figure 4 which was also determined to be optimal 
using the graphical solution approach. 
Finally, the woodworker should build 3

4  Type I boxes and 3
11  Type II boxes to maximize 

his revenue to $746.67.  
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QUESTION

(a) Use the simplex method to find all optimal solutions of the following
linear programming problem.

Maximize z = −2x1 + 7x2 + 4x3

subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
2x1 − 5x2 ≤ 11
−x1 + 3x2 + x3 = 7
x1 − 8x2 + 4x3 ≥ 33.

(b) A company needs to lease warehouse space over the next five months.
The requirements for space in thousands of square feet are shown in
the following table.

Month 1 Month 2 Month 3 Month 4 Month 5
Required space 45 30 50 20 60

It is possible to lease the exact space needed on a month-by-month
basis. However, the cost per month becomes less as the period of lease
increases, so it may be more economical to lease the maximum space
needed for the entire five-month period. A variety of intermediate
strategies are also possible which may involve starting two or more
leases, each having a different leasing period, in some months. The cost
per month of different length leases is shown in the following table.

Leasing period (months) 1 2 3 4 5
Cost (£) per 1000 square feet per month 600 480 420 380 350

Write down a linear programming formulation (but do not attempt to
solve it) for the problem of finding a leasing policy so that the space
requirements for the next five months are met at minimum total leasing
cost.

ANSWER

(a) Add slack variables s1, s2 and artificial variables a1, a2.

Basic z′ z x1 x2 x3 s1 s2 a1 a2

s1 0 0 2 −5 0 1 0 0 0 11
a1 0 0 −1 3 1 0 0 1 1 7
a2 0 0 1 −8 4 0 −1 0 1 33

1 +1 +1 0
1 0 0 5 −5 0 1 0 0 −40
0 1 2 −7 −4 0 0 0 0 0

1



Basic z′ z x1 x2 x3 s1 s2 a1 a2

s1 0 0 2 −5 0 1 0 0 0 11
x3 0 0 −1 3 1 0 0 1 1 7
a2 0 0 5 −20 0 0 −1 −4 1 5

1 0 −5 20 0 0 1 5 0 −5
0 1 −2 5 0 0 0 4 0 28

Basic z′ −z −x1 −x2 x3 s1 s2 a1 a2

s1 0 0 0 3 0 1 2

5

8

5
−

2

5
9

x3 0 0 0 −1 1 0 −
1

5

1

5

1

5
1

−1 0 0 0 0 0 0 1 1 0
0 1 0 −3 0 0 −

2

5

12

5

2

5
30

Basic x x1 x2 x3 s1 s2

x2 0 0 1 0 1

3

2

15
3

x3 0 0 0 1 1

3
−

1

15
11

x1 0 1 0 0 4

3

1

3
13

1 0 0 0 1 0 39

Solution is x1 = 13, x2 = 3, x3 = 11, z = 39

Perform another iteration to find an alternative optimal solution.

Basic x x1 x2 x3 s1 s2

s2 0 0 15

2
0 5

2
1 45

2

x3 0 0 1

2
1 1

2
0 11

2

1 0 0 0 1 0 39

An alternative optimal solution is x1 =
11

2
, x2 = 0, x3 =

25

2
, z = 39.

Thus (x1, x2, x3) = α(13, 3, 11)+ (1−α)
(

11

2
, 0, 25

2

)

for 0 ≤ α ≤ 1 is the
class of all optimal solutions.

(b) Let x11, x12, x13, x14, x15 be the number of square feet leased at the
start of month 1 for 1, 2, 3, 4, 5 months respectively.

Variables

x21, x22, x23, x24 for month 2
x31, x32, x33 for month 3
x41, x42 for month 4
x51 for month 5

are defined similarly.

Maximize

z = 600(x11 + x21 + x31 + x41 + x51)

2



+960(x12 + x22 + x32 + x42)

+1260(x13 + x23 + x33)

+1520(x14 + x24) + 1750x15

subject to xij ≥ 0 all i, j.

x11 + x12 + x13 + x14 + x15 ≥ 45

x12 + x13 + x14 + x15

+x21 + x22 + x23 + x24 ≥ 30

x13 + x14 + x15

+x22 + x23 + x24

+x31 + x32 + x33 ≥ 50

x14 + x15 + x23 + x24

+x32 + x33 + x41 + x42 ≥ 20

x15 + x24 + x33 + x42 + x51 ≥ 60

3
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